Thursday, January 3, 2013

Handcuffs of the Future: Electroshock - Inject Drugs - Biometrics

 It's like something ripped right out of a dystopian futuristic sci-fi novel: A U.S. patent has been uncovered that describes electronic handcuffs capable of delivering torturous electroshocks, gas injections and injectable chemical restraints to prisoners who wear them. The cuffs can be remote-controlled by prison guards, cops or MPs to deliver stronger or weaker electroshocks as desired... or even chemical injections.

 The device is described in U.S. patent application number 20120298119, and the three people behind its invention are Reese; Corbin; (Scottsdale, AZ) ; Pegg; Donald L.; (Chandler, AZ) ; Lockwood; Lucius L.; (Phoenix, AZ)

As described in the patent application:

 Embodiments of the restraining device of the present invention includes a restraint for physically constraining movement of at least a portion of a detainee's body; an electric shock component coupled to the restraint; and a control system coupled to the electric shock component, the control system configured to cause the electric shock component to deliver a shock to the detainee when a predetermined condition occurs. The restraining device may be any device capable of being attached to a detainee and restraining at least a portion of the detainee's body, and in various implementations may include at least one of: a handcuff; an ankle cuff; a restraining belt; a straightjacket; a harness; a facial restraint; a helmet; and a neck collar; and combinations thereof.

 Combined with RFID to deliver proximity electroshocks, the handcuffs are able to deliver electroshock torture in combination with RFID chips that determine the distance between prisoners and weapons or other objects. If the prisoner wearing the cuffs approaches too closely to an RFID-equipped object, they are electro-shocked.

 As the patent describes: ...if a weapon is equipped with an RFID or other identification device, sensors in the restraining device may transmit a signal and receive a response signal indicating that a weapon is in a predetermined the proximity, and if the detainee does not move away from the weapon to cause the response signal to fall below a predetermined threshold, a shock will be administered.

 If you fail to verbally acknowledge, you will be electroshocked. The cuffs can also be configured to deliver electroshocks to prisoners upon their failure to verbally acknowledge something. As described in the patent: In yet another embodiment, an unauthorized activity occurs when the detainee fails to provide a predetermined verbal acknowledgement.

 If you do not answer, YES SIR! in other words, you will be tortured for your silence.

 Gas injection system medicates prisoner with government chemicals. It's not enough to merely electroshock torture prisoners who are wearing these cuffs, by the way. The invention also includes microscopic needles and a "gas injection system" to inject the prisoner with whatever drugs or chemicals the government desires.

As described in the patent:

 Various embodiments of the restraining device of the present invention also comprise a substance delivery system in communication with the control system, wherein the control system is configured to cause the substance delivery system to expose the detainee to the substance. The substance may includes any substance capable of being stored or delivered by the restraining device to achieve any desired result, and may be a least one of a liquid, a gas, a dye, an irritant, a medication, a sedative, a transdermal medication or transdermal enhancers such as dimethyl sulfoxide, a chemical restraint, a paralytic, a medication prescribed to the detainee, and combinations thereof. In some embodiments, the restraining device may be configured to inject the substance through a movable needle or gas injection system. Administration of such substances may be in addition to or in place of any electric shocks delivered by the restraining device, and substances may be delivered to achieve any desired goal such as providing a needed medication to a patient; preventing occurrence of uncontrollable psychotic episodes or seizures, suppression of undesirable behavior, chemical restraint when electrical restraint is insufficient (such as in the case if a energy storage device in the restraining device has insufficient charge state) or any other desired reason.

 Can you get any more police state than this? Prison guards, TSA and federal police state goons exhibit cruel behavior.

 If you put these electroshock torture devices into the hands of today's sociopathic law enforcers, it creates the perfect recipe for cruel and unusual punishment of victims who have merely been handcuffed and may not be guilty of any crime whatsoever.

 In California, the raw milk man James Stewart was shackled by LA County jail goons who chained Stewart's arms and legs together, then left him in a cold, isolated cell to suffer from hypothermia. This was all part of an effort to get Stewart to relent and give in to a plea bargain (which he eventually did, in order to save his own life).

  Had LA County jail guard been given access to these new patented electroshock torture handcuffs, they would no doubt have enjoyed a few rounds of delivering painful shocks to Stewart's body as they remote controlled the device.

 This is the problem with the introduction of new torture technologies into a police state society that utterly lacks ethics, morals and compassion. The United States government no longer even follows law! Instead of the devices being used for the purpose of protecting citizens' rights as guaranteed under the U.S. Bill of Rights, they will be used as entertainment devices for police state goons to get their kicks by torturing prisoners who will soon be anyone who speaks out against government tyranny or speaks of the United States Constitution.

 Do law enforcers really abuse citizens in America today? Just recently, a deranged police officer in Texas was caught on video kneeing a kid's head into the dirt and screaming: Move So I Can Kick Your Ass And F*** You Up! That video is available at

 One can only imagine what these cruel, inhumane law enforcement goons are going to do if the U.S. government starts providing them with electroshock torture handcuffs.

Sources for this story include: - these folks deserve credit for locating this patent and sounding the alarm.

Security System

 In some embodiments, the controller 170 may include an optional security system. This system may restrict unauthorized detainees from accessing, actuating, or disabling controller 170. For example, an authorized user may be required to enter a password in the user interface 725 to access functions within the device, and access will only be provided if the entered password matches a password previously stored within the controller. In another implementation, measurement of a biometric parameter such as an authorized user's voice or an authorized user's fingerprint is compared to an exemplar biometric measurement previously stored within the controller's memory 735, and access to the functions of the controller 170 is only provided if the measured biometric parameter matches the previously stored biometric parameter within a predetermined error range. Further, the security system 750 may comprise an authentication port for a mechanical tool such as a key, and will only allow the controller 170 to operate if a proper key is engaged in the authentication port. In an alternate embodiment, the security system 750 broadcasts a signal such as an RFID interrogation signal, and will only allow activation if a proper RFID interrogation response is received in this way, detention officials wearing the proper RFID tag (such as integrated within a badge) would automatically be authorized to use the controller 170, but persons not having a proper RFID tag would be unable to use the device. Additionally, in some embodiments a safety is included so that the controller 170 is not inadvertently activated. This safety may be any suitable safety such as a toggle switch or button, a lever that must be moved from a first position to a second position, a slide at least partially covering the switch 710 and/or a warning command requesting a confirmation instruction. In another embodiment, an actuation signal will not be transmitted by the controller 170 unless a rapid succession of presses of the switch 710 occurs (such as three button presses within 1 second), preventing unintended actuation of the restraining device 110 by incidental contact with the actuator 710 of the controller 170. Alternatively, in one embodiment the electric shock component may not be activated until the restraining member 120 is in a second closed (locked) position, as detected by a switch within the sensors of the restraining device 110 coupled to the control system 160.


 The restraining device is attached to the detainee, the process monitors for occurrence of a predetermined condition 810, which as described above may include a detention officer pressing a button, the detainee engaging in unauthorized behavior, or an external entity sending an actuation signal to the restraining device, or a computer program determining that a set of conditions has been violated or exceeded. In one implementation, the detainee to whom the restraining device is attached may be given a warning before any shock is administered, and if the predetermined condition ceases to occur 840, the process returns to monitoring and waiting for a predetermined condition to occur. The warning may be visual, such as a flashing light, sensory such as vibration, or audio such as a tone or command. If the warning is ignored and/or the actions that prompted the warning continue or additional inappropriate actions occur, a shock level may be adjusted 850 in one embodiment of the present invention, such as to a low initial level for a first shock, and a higher level for subsequent shocks.

 Alternatively, the output level of the shock to be administered is the same for all shocks. The shock is then administered to the detainee 860. If this first delivery of electric shock is ignored and/or the actions that prompted the first electric shock continue or additional inappropriate actions occur, the process may repeat, possibly with a warning followed by a second electric shock of a second intensity of a second duration for a second set number of pulses will be delivered to the detainee. The second intensity of electric shock may be the same voltage, less voltage or preferably greater voltage than the first intensity of electric shock. The second duration of electric shock may be the same duration, less duration or preferably greater duration than the first intensity of electric shock. The second set number of pulses of electric shock may be the same quantity, less quantity or preferably greater quantity than the first set number of pulses of electric shock. This stepped response may continue until the presets of the computer program and/or controller operator deem sufficient.

 In various embodiments, safety mechanisms may be included in the control system 160 of the restraining device 110 and/or controller 170 to prevent a detainee from receiving greater than a predetermined nonlethal amount of electric shock in a predetermined period of time. In another embodiment, the detainee interface 155 receives electrical impulses from the detainee's heart, and returns them via EKG/EGG sensors to the sensor components 1107 for analysis by the control system 160. If the detainee's measured EKG is not measured to be in a safe range for administration of a shock (for instance, if fibrillation or arrhythmia is detected), the shock from the electric shock component 150 will be suppressed. In an alternate embodiment, if the measured EKG signal from the detainee interface 155 indicates a health issue, the control system 160 may send a message to an external entity 1100 through the communication interface 1007, indicating that the particular detainee is experiencing a health issue. In this manner, an external entity may avoid or suppress sending an activation signal to the restraining device, and/or summon medical care for the detainee.


 FIGURE 1. is a diagram of an example of an implementation of a television 100 capable of performing automated real time hand tracking, pose classification, and interface control. It should be noted that use of the television 100 within the present example is for purposes of illustration only. As such, a system that implements the automated real time hand tracking, pose classification, and interface control described herein may form a portion of a handheld consumer electronics device or any other suitable device without departure from the scope of the present subject matter.

 Example detected hand gestures that may be identified and used to control a device, such as a consumer electronics device, include detection of a thumbs-up hand gesture or a pointing-up hand gesture that may be identified and associated with a control command to turn on a consumer electronics device. Similarly, detection of a thumbs-down or a pointing-down hand gesture, for example, may be identified and associated with a control command to turn off a consumer electronics device. Any hand gesture that may be detected and identified based upon the present subject matter may be used to control an interface, such as a user interface, of a device. Additionally, hand gestures may be created by a user and assigned to control functions in response to hand gesture inputs. Many possibilities exist for user interface control and all are considered within the scope of the present subject matter.

 The present subject matter may operate using a single camera, such as a monocular camera, and a data driven approach that uses scale invariant feature transforms (SIFT) descriptors and pixel intensity/displacement descriptors as extracted features to not only track but also classify articulated poses of a hand in three dimensions. However, it should be noted that the processing described herein may be extended to use multiple cameras which may dramatically increase accuracy. The real time aspect allows it to be integrated into consumer electronic devices. It may also have application in three dimensional (3D) modeling, new desktop user-interfaces, and multi touch interfaces. Real-time embedded systems may also be improved by creating a more intuitive interface device for such implementations.

 Examples of such regions include tips of a finger, lines formed when fingers are curled, or other such regions.

 FIGURE 4. is a flow chart of automated real time hand tracking, pose classification, and interface control. The process 400 obtains 3D motion capture (mocap) data, such as described above, at block 406. Obtaining the mocap data may include retrieving a text file containing position and orientation of joints for each frame of an animation. An example mocap file may include a sequence of hundreds of frames that depict one complete movement of a hand. At block 408, the process 400 renders and animates the sequence of frames associated with the mocap data. Rendering and animating the sequence of frames associated with mocap data may include reading the mocap data file frame by frame and creating a 3D mesh that looks like a hand, where the position and orientation of the hand is determined by the joint data stored in the mocap data file for each frame. Rendering and animating the sequence of frames associated with mocap data may include rendering and animating the mocap data using, for example, OpenGL® or other graphics library.

 An approximation is selected for the current set of joints. The selected approximation is applied to determine a change to the target degrees of freedom (DOF) for the current set of joints. The change to the target degrees of freedom (DOF) for the current set of joints is applied to the current joints in the hand model that were initialized to the inferred training pose. A new error vector is calculated with respect to the ground truth position of joints obtained from the motion capture data.

 For example, a suitable training set of, for example, four thousand (4000) hand images extracted from video frames obtained from any available motion capture (mocap) database may be collected. Such data may also include three dimensional (3D) joint data as well as 2D synthesized images which may be used to establish correspondences and/or correlations that increase pose inference accuracy. Each set may be divided into sets of two for training and testing purposes. As such, processing may begin, for example, with a set of one hundred (100) images. Set counts may then be increased by one hundred (100) images for each iteration. At each iteration, a root mean square error may be measured between test labels. In such an implementation, a set of as few as one thousand four hundred (1400) images may be utilized in a sample database to yield acceptable results, again as appropriate for a given implementation. Regarding training parameters, results may be optimized for input to an IK solver, and centroids may be calculated for each synthetically generated training image. These synthetically generated training image and calculated centroids may be associated with joint data from a 3D mocap database, such as described above. Training and extraction of a feature vector, such as a feature vector of 60 elements, may be used. Such a numeric quantity represents a heuristic estimate that may be used to eliminate the effect of outlier data elements in a given feature space. A regularization parameter may be used within a given multiclass SVM implementation to reduce/minimize an effect of bias in the dataset. An example regularization parameter may include, for example, seventy eight one hundredths (0.78). This value may be determined by iteratively training the multiclass SVM with incrementing regularization values until the root mean square (RMS) value of error is less than a desired error level, such as for example one tenth (0.1).

Approximation of an Articulated Pose Using Inverse Kinematic (IK) Optimization

 Regarding approximation of an articulated pose using IK optimization, inverse kinematics may be used to improve articulated pose. As described above, the present subject matter does not rely on color gloves. However, it is noted that the present subject matter may adapted to be utilized with gloved hands during cold weather, for example. With the present examples, bare-hand pose identification is performed. Centroids of SIFT descriptors are used to improve accuracy of pose estimation. It should be noted that, though processing without IK optimization may be able to distinguish ten (10) or more different pose types consistently, IK optimization allows removal of certain ambiguities in pose that pure SVM implementation may not resolve.

 As such, an initial portion of the processing establishes a one-to-one mapping between the 3D pose data (e.g., from a mocap database) and the 2D SIFT features that have been detected. The image is broken up into thirty two by thirty two (32X32) image regions, which may be considered pixel patches for purposes of description. Features are extracted for each region separately. For each region, centroids of the features within the region are calculated and then that location is mapped to the corresponding 3D pose data. As a result, for any centroid feature within the training set, a three dimensional point on the real hand data may be identified.

 A hand presents a motion of twenty seven (27) degrees of freedom (DOF). Of the twenty seven degrees of freedom, twenty one (21) represent joint angles and six (6) represent orientation and location. Hand tracking conventionally utilizes colored gloves and color pattern matching, retro-reflective markers attached to a hand using an array of overlapping cameras (e.g.,stereoscopic camera systems), or instrumented gloves/sensor systems.

 The hand pose storage area 210 may store information, such as a vocabulary of hand poses captured and utilized for processing the automated real time hand tracking, pose classification, and interface control of the present subject matter. The hand tracking and pose processing storage area 212 may store information, such as images captured by the camera 112 and intermediate and final stages of processing of captured images in association with hand pose identification. The control correlation storage area 214 may store information, such hand positions or hand position identifiers that have been correlated with control commands for the television 100.

 At decision point 708, the process 700 makes a determination as to whether the identified gesture is associated with a control function of an electronics device. For example, a hand gesture may be associated with turning on the electronics device, turning off the electronics device, adjusting a volume of an audio output, or other control function of the electronics device. In response to determining that the identified gesture is associated with a control function of an electronics device, the process 700 makes a determination as to whether the hand gesture has been detected for a threshold duration of time associated with control of the electronics device at decision point 710. A control threshold may be used, for example, to implement hysteresis to the electronic device controls to eliminate false control signals. The configured control threshold may include any suitable range for a given implementation, such as for example, two hundred milliseconds (200 ms) or a higher or lower duration as appropriate for a given implementation.


 There is provided a device and system for restraining detainees through devices attached to the detainees and configured to administer electrical shocks when certain predetermined conditions occur. Restraining devices may be activated by internal control systems or by external controllers that transmit activation signals to the restraining device. External controllers may be actuated by an external controlling entity such as a detention guard or other person or system, or may be controlled by an enabling signal sent by wired or wireless connections to the controller. There is also provided a system for detainee restraint where multiple detainees may be restrained collectively or individually in a controlled environment such as a detention facility, a jail, or a detainee transport vehicle.